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Defining the smallest analyte concentration an
immunoassay can measure

EMERY N. BRowir.4,l,* TIMOTHY J. MCDERMOTT,2 KURT J. BLOCH,2 and ALEX D. MCCOLLOM’

itn iminunoassay’s minimal detectable concentration

(MDC), the smallest analyte concentration the assay can

reliably measure, is one of its most important properties.
Bayes’ theorem is used to unify the five current mathemat-

ical MDC definitions. The unified definition has significant

implications for defining positive results for screening and
diagnostic tests, setting criteria for immunoassay quality

control and optimal design, reliably measuring biological
substances at low concentrations, and, in general, measur-
ing small analyte concentrations with calibrated analytic

methods. As an illustration, we apply the unified definition
to the microparticle capture enzyme immunoassay for pros-
tate-specific antigen (PSA) developed for the Abbott LMx””

automated immunoassay system. The MDC of this assay as
estimated by our unifying approach is shown to be 4.1-7.1

times greater than currently reported. As a consequence,

the ability of the assay to measure reliably small concentra-

tions of PSA to detect early recurrences of prostate cancer

is probably overstated.

INDEXING TER.iMS: Bayesian statistics #{149}detection limit #{149}enzyme

immunoassay e minimal detectable dose #{149}prostate disease #{149}

iensitivity

Dne of the most important properties of any immunoassay is its

minimal detectable concentration (MDC), the smallest analyte

:oncentration that the assay can reliably measure.3 The MDC is

essential for defining disease states relating to low concentra-

ions of a biological substance, screening for disease with

biochemical and molecular markers, characterizing low-dose

exposure to a carcinogen or pollutant, and defining lower limits
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of reliable reporting in screening tests for toxic substances,

contaminants, and illicit drugs [1-71.It is the criterion optimized
in developing a new assay and the property most often reported

when comparing the performance of different assays for the

same analyte [8].

The reported MDC is determined by the physical and

chemical properties of the immunoassay’s constituents and by

the mathematical formula used to compute it [8J.Although the

MDC is defined as the smallest analyte concentration the

immunoassay can reliably measure, different interpretations of

this statement have led to different mathematical formulations

of its definition. Indeed, as we discuss below, the definitions

used for immunoassay design are different from those used in

assay calibration studies and routine laboratory analyses. Fur-

thermore, research on statistical methods for assay data analysis

has not kept pace with the advances in immunoassay technology.

Statistical methods currently used were developed 20-2 5 years

ago, when simplifying assumptions and approximations were

needed to make analyses computationally feasible. The methods

based on these approximations have not been reevaluated, and

their impact on immunoassay properties, such as the MDC, has

not been reassessed. We summarize the salient concepts under-

lying the five current mathematical MDC definitions and
present a unified definition based on Bayes’ theorem. The new

definition is compared with the current ones in a study of a
microparticle capture enzyme immunoassay (MEIA) for pros-

tate-specific antigen (PSA) developed for the Abbott IMx”'
automated immunoassay (Abbott Labs., Abbott Park, IL).

Theory
FOUR-PARAMETER LOGISTIC EQUATION

Let X denote a concentration of analyte and let Y be the

response measured from assaying the analyte sample. We let

[IIX,O] denote the error probability density of the response V
given analyte concentration X, where 0 is the vector of param-

eters that defines the specific form of the probability density.
The error probability density summarizes all uncertainty in the
response for a given analyte concentration; its mean function,

E(YIX,0), is the assay dose-response curve; and its variance

function, V(}IXO), describes the variance of the response for a

given analyte concentration and level of experimental error [9J.
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Author
Yalow-Berson

Ekins-Newman
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Currie (critical limit)”

Currie (critical limit, empirical)”

Currie (detection limit)”

Currie (determination limit)

Table 1. Current definitions of the MDC.
MDC definition

IdE(flX = 0,0)
1 dX

[V(}IX = 0,0)112

dE(IIX= 0,0)

dX

X:E(YlX = 0,0) + t1 . [V(11X = 0,0) + V(YIX = X, 0)/k]h’2 = E(YIX = X0)}

(X:Yo + 2Sy,:= E(YIXr, 0)}

{X3:E(Y1X= X,0) + t1..,[V(11X= X,0) + V(YIX Xd)Ik]”2 = E(YIX X1,0)}

[V(YIX = X,,,0)Ik]”2

E(YIX=X) =CV

dX

8 Theformulaefor X, Xe.,and X0assume E(flX,O) is a monotone increasing function of X, as is the case for the Abbott MEIA for PSA.

We make the typical assumption for immunoassay analyses that

[Y1X,0] is a gaussian probability density whose mean function is

the four-parameter logistic (4PL) or Rodbard equation defined

as

- 04
E(YIX,0) = X (I: + 04 (1)

and whose variance function is V(Y1X,0) = E(JIX,0)#{176}’,where 0

= (Os, 02, 05, 04, 05)T For immunoassays in which V is a

counting process, such as radioactivity, fluorescence, or chemi-
luminescence, [}IX,0] approximates a Poisson probability mass

function with a large mean, and the experimental error is

measured by the extra-Poisson error, i.e., the extent to which 05

>1 [9].

CURRENT DEFINITIONS OF MDC

Current definitions of the MDC can be expressed as functions of

E(Y1X,0) and V(Y1X,O) (Table 1). Yalow and Berson defined the

MDC as the slope of the dose-response curve at the zero dose

[10]. Ekins and Newman defined it as the standard error of the

dose-response curve at the zero dose divided by the slope at the
zero dose [11]. The Yalow-Berson and Ekins-Newman defini-

tions of the MDC have led to the two most widely used

theoretical prescriptions for optimal immunoassay design based

on mass-action law approximations to the dose-response curve
[12-14]. Each gives a different prescription for the optimal

reagent combination and prediction of the MDC that combina-

tion should yield [12-14]. In the analysis of immunoassay data,

the more common practice is to represent the dose-response

curve with the empirically derived 4PL equation (Eq. 1) instead

of a mass-action law approximation. With respect to the 4PL

equation, the Yalow-Berson and Ekins-Newman definitions are

respectively: 0 and undefined if #{176}2= 0 or 1021 >1; both finite in

the special case of 1021= 1; and negative infinity and undefined
if 1021 <1. Thus, MDC estimates based on these definitions

cannot be reported as part of routine laboratory analyses.

Currie proposed three definitions of the MDC (Table 1) for

calibrated analytic methods: the critical limits (X. or Xe.), the

detection limit (Xi), and the determination limit (Xq) [15]. The

critical limit X. estimates an upper 1-a confidence bound of the
blank calibrator or zero dose computed from V()IX,0). The

empirical critical limit X.. estimates an upper 0.975 confidence

bound, i.e., upper bound of the 0.95 confidence interval of the

zero dose, computed from s, the sample standard deviation of

the blank responses. The critical limit sets a cutoff at which it

can be concluded that an analyte has been detected. X is the

analyte concentration that has X. as its 1-p lower confidence

bound. X, defines a concentration at which the analyte may be
reported as reliably detected, where reliably detected means

with probability 1-f3. Xq is the smallest analyte estimate that can

be measured quantitatively with a specified level of precision,

where the acceptable level of precision is defined as a coefficient

of variation (CV). Currie’s definitions separate the neighbor-

hood near the zero dose into three analytic regions: the regions

of (a) unreliable detection, (b) qualitative analysis, and (c)

quantitative analysis. X defines the border between regions a

and b, and X,,, the border between regions b and c. These MDC

definitions have been adapted to immunoassays and are used
regularly in laboratory analyses 116-21].

The Ekins-Newman and Currie’s first two definitions of the

MDC may be interpreted in terms of type I and type II errors.

For immunoassay measurements near the zero dose, the type I

error of level a (probability of a zero dose being declared as

nonzero) is defined by the 1-a quantile of the probability

density of the zero dose. We show below that the Ekins-

Newman and the critical limit definitions have different prob-

abilities of type I error because they estimate different quantiles

of the zero dose probability density by using different approxi-

mation methods. The type II error of level (3 (probability of a

nonzero dose being declared as zero) is defined in terms of the

probability density of an analyte concentration near the zero

dose whose f3 quantile is the critical limit. The mean of this

probability density is the detection limit. The detection limit
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definition takes account of type I error of level a and type II sured response in the assay and for comparing analyte concen-

error of level /3. trations in terms of their probability densities.

The Yalow-Berson definition has units of response/analyte To formulate our definition of the MDC, we state the

instead of analyte and is not a measure of the assay’s MDC but problem of infemng an analyte concentration from the response

rather of its sensitivity at the zero dose. Sensitivity is often used measured in the assay in terms of Bayes’ theorem. Bayes’

incorrectly as a synonym of the MDC [22, 23]. Hence, this defini- theorem is a basic law of elementary probability theory used to

tion will not be used in formulating our definition of the MDC compute the probability of one event, given that another has

or in our data analyses. occurred. This law is especially appropriate for immunoassay

There are six important shortcomings in the formulation and

use of Currie’s definitions as applied to immunoassays. First, the

critical limit definition considers only the type I error, i.e., the

error in the zero dose or blank calibrators. Second, neither the

analyses in which, given a specimen’s response, we wish to infer

what is the most probable analyte concentration the specimen

contains. Bayes’ theorem can be used to give a mathematical

formulation of this statement in terms of a posterior probability

critical limit nor the detection limit provides a measure of

precision for its MDC estimate, whereas the determination limit

density [26]. If [X1Y,01 denotes the posterior probability density

of X given Y, then by Bayes’ theorem

does not provide a measure of either type I or type II error [24].

Third, each definition assumes implicitly that the uncertainty in

low analyte concentrations can be approximated by symmetric

probability densities such as the gaussian or t. Because negative

analyte values are not possible, the probability density of an

analyte concentration near zero must be skewed to the right (see

Fig. 1A below). Fourth, the critical limit is the most commonly

used MDC definition primarily because the empirical critical

limit is the simplest to compute. It appears to be forgotten that

Currie placed the critical limit well within his region of unreli-

able detection and that he considered the detection limit to be

the smallest analyte concentration that may be reported as

detected reliably. As stated above, the detection limit is the

border between the regions of unreliable detection and detec-

tion acceptable for qualitative analysis. Fifth, backfltting, invert-

ing the dose-response curve formula in Eq. 1 to compute X for

a given Y, is the method used in these three definitions to

estimate the analyte for a given response. Although backfitting

gives reasonable analyte estimates, the associated error estimates

derived from this technique can be less reliable [25].

A final shortcoming of the current definitions of the MDC

arises from the difference between the experimental paradigm

under which the MDC is computed and the one used in routine

laboratory analyses. The MDC is usually computed in a calibra-

tion analysis. This is an assay run in which the dose-response

curve is estimated with 8 to 20 blank calibrators and 2 or more

replicates of each nonblank calibrator. A routine assay run
dose-response curve, however, is estimated with at most 2

replicates of each calibrator, and an MDC is not determined.

Hence, the reported MDC is determined under conditions

distinct from those used in routine assay runs and is not a

run-specific estimate of the smallest detectable analyte concen-

(yix,el
[X”0] = [110]

where [X] is the prior probability density of the analyte concen-

tration, [Y]X,0] is the error probability density defined in Eq. 1,

and [110] is the normalizing constant. The prior probability

density represents the range of analyte concentrations likely to

be observed in the assay and is defined primarily by the assay’s
working range [16].An immunoassay is by design a statistically

informative experiment in that, for any specimen containing an

unknown concentration of analyte, information from the assay

analysis dominates that known before performing the assay.

Therefore, [X] can be modeled as a uniform probability density

[27]. We have determined from empirical study of numerous
.
immunoassay systems that [X] is well described by a uniform

probability density on the interval from 0 to 1.5 times the largest

nonblank calibrator [28]. Defining explicit functional forms for

the prior and error probability densities is essential to apply

Bayes’ theorem in immunoassay data analyses.

Given V, the response of a specimen containing an unknown

concentration of analyte, Bayes’ theorem combines information

about the immunoassay’s properties summarized in the prior
probability density with information from the assay experiment

defined by [YIX,O} to compute the most probable set of analyte

concentrations for that response. The set of analyte concentra-

tions over which the posterior probability density [X]Y,0] takes

lues defines the uncertainty in the analyte for thaton nonzero va

response. In other words, the posterior probability density

summarizes all the uncertainty concerning the concentration of

analyte in a specimen once the response of that specimen has

been measured. To report immunoassay findings, it is necessary

to choose a single representative concentration from the set

defined by [X1Y,0I to be the analyte estimate for the response.
tration. Assay laboratories often address this ambiguity by

setting a conservative lower reporting limit well above the MDC
We use the median instead of the mean as the analyte estimate

for each posterior probability density because the median pro-
stated by the assay’s manufacturer. vides a more representative single number summary for a

DEFINITION OF MDC BASED ON BAYES’ THEOREM

skewed probability density. The two are equal for a symmetric

probability density [29]. Thus, we interpret the median of

We consider the essential concepts embodied in the current [X1Y,O] as the analyte estimate for the response Yand the range

definitions of the MDC to be: (a)consideration of type I error; of [X1Y,0] as defining the uncertainty in this estimate. Applica-

(b)consideration of type II error; (c) a statement of the measure- tion of Eq. 2 to the analysis of immunoassay data requires an

ment precision; and (‘0 a logical framework for making a estimate of 0. This parameter may be estimated by fitting Eq. 1

statement regarding the analyte concentration given the mea- to the immunoassay’s calibrators and their responses by using

ClinicalChemistry 42, No. 6, 1996 895

(2)
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either standard least-squares or maximum likelihood methods

[9, 28].
We interpret the statement that the MDC is the smallest

analyte concentration an immunoassay can reliably measure to
mean the smallest analyte concentration that may be reported to

be greater than the assay’s zero dose with a high probability, say

0.95. We take the zero dose to be the set of analyte concentra-
tions that may be inferred from the response of the blank

calibrators and represent it explicitly in terms of a posterior

probability density with Eq 2. With this interpretation we can
use Bayes’ theorem to formulate a definition of the MDC in

terms of the probability density of the zero dose and the

probability densities of concentrations near the zero dose. In this

way, we extend the concept of type I error to the consideration
of all the uncertainty in the zero dose and we extend the concept

of type II error to consideration of all the uncertainty in any

analyte concentration near the zero dose. We can also define the

precision with which the MDC is determined both as the
probability that it exceeds the zero dose atid as the CV of its
probability density. Therefore, we arrive at one definition that
considers all the concepts in the four MDC definitions. The

formal statement of our definition is as follows.

Definition1. Let and X,, be the random variables whose

probability densities are respectively [XIY,0] and [X1Y0,0],

where V0 is the immunoassay response of the blank calibrators.

Find that satisfies the condition

f x)IY,0}dv = p

where [X*IY,0] is the probability density of the random variable

= - x represents a specific value of the random
variable X”, and 0.5 <p 1. Then, the MDC of the immuno-

assay is Xb, the median of [X]V,O], defined as

fxs
Xb:J [X(x)lV0]dxJ [X(x)IY,O]dv=0.5 (4)

0 Xi.

where X,ssax is the upper endpoint of the range of the prior

density. As stated above, x,5, is taken to be 1.5 times the largest
nonblank calibrator. The lower limit of 0.5 for p follows from

Lemma I in the Appendix.

To understand this definition of the MDC, we describe its

logic with the aid of a graphical representation in Fig. 1. First,

we set p equal to an acceptable level of certainty such as 0.95.

Once Y0, the responses of the blank calibratbrs, have been

measured and the assay dose-response relation defined by Eq. 1

has been estimated by using the calibrators and their responses,

we may use Eq. 2 to compute the posterior probability density

[X1Y,0] (broken curve in Fig. 1A). This probability density

defines the error in the zero dose, i.e., the set of concentrations
that is most likely, given the responses of the blank calibrators.

This probability density illustrates the extent to which the

uncertainty in the blank calibrators extends into nonzero con-

centrations. As mentioned above, it is necessarily skewed to the

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Concentration Difference
Fig. 1. Graphical representation of the X definition of the MDC.
(A)The probability density p11Y0,Ol(broken curve) summarizes the uncertaintyin
the zero dose given the response Y0. The probability density [AlY,O[ (solid curve)
summarizes the most probable set of analyte concentrations given the response
Y. Its median (solid vertical line) is the analyte estimate given for this response.
(B) The probability that an analyte estimate is greater than the zero dose equals
the probability that the difference between the two is greaterthan zero. [X*IYOl
is the probability density of this difference. The black area under [X8IVOl is the
left side of Eq. 3 and defines the probability that the difference is greater than
zero. If the black area is p then the median in (A) is Xb.

right because negative analyte concentrations are not physically

possible. Similarly, for any Y,we may use Eq. 2 to compute the

posterior probability density [X]Y,O] (solid curve in Fig. IA) and
take the median of [X1Y,0] (solid vertical line in Fig. 1A) as the

associated analyte estimate for that response. To compute our

definition of the MDC, we must compute the probability that an
analyte estimate is greater than the zero dose. This probability is

the same as the probability that the difference between the

analyte estimate and zero dose is greater than zero. The

probability density [XIV,0] (Fig. IB) is the probability density

of this difference and is computed from [X1Y,OI and [X]YO,O] by

convolution [30]. The black region under [X*IY,0] in Fig. lB is

the area to the right of zero and thus defines the probability that

the difference between the analyte estimate and the zero dose is
greater than zero. This region is defined mathematically by the

left side of Eq. 3. If the area of this region is equal to 0.95, then

the analyte estimate in Fig. lA-median of [X1Y,0]-is the

MDC.

The MDC is computed numerically by searching among the
responses in the neighborhood of Y() to locate the analyte

concentration in the neighborhood of the zero dose that satisfies

Eq. 3. If the number of specimen replicates is >1, i.e., if Yis a
vector, there may be a range of analyte concentrations whose

probability densities satisfy Eq. 3. In this case, X0 is taken to be

the largest analyte concentration in this range.

RELATION AMONG DEFINITIONS OF MDC

Our definition unifies the current MDC definitions because

each of the latter either approximates some component of X,, or
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agrees with Xb under a set of special conditions. These relations

are established in Propositions 1-5 in the Appendix. X. (Xe.) is a

large-sample approximation to the 0.975 (1-a) quantile of

[X1Y0,O], the probability density of the zero dose, computed by

backfitting and gaussian (t-) density approximations (Propositions

I and 2). The Ekins-Newman definition is a large-sample

gaussian approximation to the 0.84 quantile of [X1Y0,0] for a

dose-response curve with a nonzero derivative at the zero dose

(Proposition 3). The same gaussian approximation is used to

compute Xq in Table 1. The detection limit, Xe,, is a large-

sample approximation to X,, since it finds the analyte concen-

tration that is greater than the zero dose with probability l-/3.

The zero dose is estimated by X., an approximation of the 1-a

quantile of the zero dose probability density. The formula for

the detection limit in Table 1 uses backfitting and a t-density

approximation to estimate both X. and the mean of the proba-

bility density that has X. as its /3 quantile. Kb, in contrast, is

computed by comparing the probability density of the zero dose

with the probability density of every analyte concentration near

the zero dose. Moreover, Xb can be computed for any choice of

[X] and [Y]X,0]. In Proposition 4 we show that X may be derived

as a special case of X,,.

The concept of precision used in the definition of is an

explicit property of Xh. This is because each posterior probabil-

ity density defined by Eq. 2 for [X], a uniform probability

density, and [Y1X,0], a gaussian probability density, has a

well-defined CV. More generally, because Kb has an associated

probability density, its precision may be stated in terms of the
probability that it is greater than the zero dose, its CV, or any

other property of its probability density that may be analytically

important. In Proposition 5 we show that if y is given and Eq. 2

is used in lieu of the gaussian approximation of Table I to

compute X0, then it is possible to find p in Definition 1 such that

X5 = Xh. Conversely we show that, given p, it is possible to find

y such that Xb = Xq Therefore, if a certain level of measurement

precision is given in terms of an immunoassay CV, then the

probability that the analyte concentration associated with that

CV is greater than the zero dose can be determined. On the

other hand, if we know how sure we must be to conclude that a

concentration is greater than the zero dose, then for the analyte

concentration associated with that level of certainty, we can find

its precision in terms of its CV.

In Proposition 6 we show that both the probability of a

measurement from [X]V0,0] being misclassified as greater than

the MDC and the probability of a measurement from the

probability density of the MDC being misclassified as indistin-

guishable from the zero dose equal l-p.

Materials and Methods
THE ABBOTT MEIA FOR PSA

To investigate the implications of our definition, we studied the

Abbott MEIA for PSA [31].Serum PSA concentrations are

measured to screen for prostate cancer and to monitor its

recurrence after medical or surgical therapy [32, 33]. The Amer-

ican Cancer Society recently recommended annual screening

Table 2. Summary of analysis protocol for the study of
Abbott MEIA for PSA.

No. of blank
calibrator No. of specimen
replicates replicates (k)

H (calibration) 20
I (excess) 20

For each analysis denoted F through I, the second column defines the number
of blank calibrator replicates used to compute [Al Y0,Ol and the third column
defines k, the number of specimenreplicatesused to computeeach [Al Y,flJ. For

example, in each H analysis there were 20 blank calibrator replicates and the
number of specimen replicates was 2. Therefore,for thisanalysisthe vectors V0
and V had respectively 20 and 2 elements. The F and H analyses correspond

respectively to routine and calibration runs of this immunoassay.

with a serum PSA concentration and digital rectal examination

in all men over age 50 years, and of all African American men

and those men with a family history of the disease at a younger

age [34].The Abbott MEIA is a widely used PSA assay. Based on

X.. computed in calibration runs with 20 blank calibrator

replicates and five nonblank calibrators each with two replicates,

its MDC is 0.03-0.04 j.g/L [32, 33]. In this assay’s routine runs,

each unknown is assayed once and the dose-response curve is

estimated with two replicates of the blank and each of the five

nonblank calibrators. In our laboratory we set the lower limit of

reliable reporting for routine runs at 0.5 Mg/L.

EXPERIMENTAL DESIGN AND DATA ANALYSIS PARADIGM

The protocol was approved by the Committee on Human

Studies of the Massachusetts General Hospital. The PSA assay

experiment was repeated five times according to Abbott’s spec-

ifications on its IMx analyzer [31]. In each repetition of the

experiment 20 replicates of the blank calibrators and four

replicates of each of the five nonblank calibrators at concentra-

tions of 2.0, 10.0, 30.0, 60.0, and 100.0 pgfL were assayed.

[IIX,0j was the gaussian density defined in Eq. 1. Since the

largest nonblank calibrator was 100 j.g/L, we took [X] to be the

uniform density on [0, 150] as discussed in Theory. The param-

eter 0 was estimated by maximum likelihood in each repetition

of the experiment from the complete set of 40 observations [28].

The blank calibrators were made from sera of normal, healthy

women blood donors. Because the IiMx analyzer can accommo-

date only 24 specimens, each run was performed in two parts by

using the analyzer’s mode one calibration between parts.

Four MDC analyses denoted F through I were performed on

the data from each repetition of the experiment (Table 2). In

each analysis X., X.., Xd, and were computed from the

formulae in Table 1. For X. and Xd we set a and /3 = 0.05. For

Xq we set y = 0.20, since CVs ranging from 0.183 to 0.2 76 for

PSA concentrations near the MDC have been reported [32].

The Ekins-Newman definition is not included in the analyses

because, as stated in Theory,its formula computed in terms of

the 4PL equation gives undefined estimates except for the
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Because the Ekins-Newman definition is an alternative form of Curne’s

critical limit definition, which estimates the 0.84 quantile of the probability density

of the zero dose, the formula for X in Table I could he used to compute the

Ekins-Newman definition by taking a = 0.16. We did not do this because by

definition, each value of the Ekins-Newinan definition computed in this manner

will he systematically smaller than X.

X,. should not equal the 1)95 quantile of )X1Y11,O] or K. because in our

analysis X.. approximates the 0.975 quantile, whereas X. approximates the 0.95
quantile. We did not choose the same a for both X. and because the choice of

two in the definition of Xi. implicitly sets a = 0.025, whereas X. is usually

consputed with a = 0.05 [18-21/. In our analyses, relative to the probability

density [X1Y11,OJ,X. is an underestimate of its quantile whereas X. is an

overestimate of its quancile.
a The percent CV5 are those of the Xb posterior probability densities.
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Fig. 2. Estimates of the MDC for the five repetitions of the assay
experiment: F, G, H, and I denote the analyses within each experiment
as described in Table 2.
Thesymbolsfor the definitions of the MDC are: z = Xe., b = Xb, c = X, d = X0,

and q = X4.

special case of 1021= l. Under the assumption that the random

variables X7 and X are independent, given the maximum

likelihood estimate of 0, we computed each IX*IV,0] by numer-

ical convolution, using a rectangular integration algorithm based
on the fast Fourier transform [35]. X,, was then computed

numerically from the definition in Eq. 3 with p = 0.95.

Results
The same relations among the MDC estimates held in each

repetition of the experiment (Fig. 2). In all analyses X,, was less
than the conservative estimates of Xi., X, and Xq, yet greater

than the optimistic estimates of Xe.. Xi.. agreed most closely with
reported MDC values, ranging from 0.02 1 to 0.076 .tg/L

(median 0.059 .tg/L). It did not approach the 0.95 quantile of

[X1V,0] until the number of blank replicates was 20, mainly

because the latter probability densities were all right-skewed

(Fig. 3)5 X,, is 1.6-2.3 times greater than the 0.95 quantile of

[X1Y,0] in the third repetition of the assay experiment, indi-

cating that, even when well characterized, the latter appreciably
underestimates the MDC (Fig. 3 and Table 3). The percent CVs

for the zero doses in Fig. 3 suggest that the errors in this
calibrator are larger than presently appreciated. Identical per-

cent CVs (74-82%) were found when blank calibrators made

0.173
A

‘ (79%)

\ 0.273

0002 04 06 08

00 01 0.2 03 04

0.040
(77%)

C

0.098

-

00 0.2 0.3 0.4

PSA (l.lg/L)

Fig. 3. Posterior probability densities for the third repetition of the

assay experiment: I.X1Y0,O1(broken curve) and the Xb posterior density
(solid curve).
The broken vertical line is the 0.95 quantile of [AlY0Ol, the parentheses contain
the CVs of [AlV0,O}, and the solid vertical line is X5. IA) Analysis F, (B) analysis G,
(C) analysis H.

from the diluent in the Abbott PSA kit were examined with our

paradigm.

Unlike the other MDC estimates, Xi.. did not always decrease

with increases in the number of blank replicates, because of

sampling variation in the estimation of Y and Because the

CVs for the Xh posterior densities were Inuch greater than 20%
(44-64% in the third repetition of the experiment and 42- 64%

in all five repetitions), the choice of 0.20 in the formula for

led necessarily to conservative MDC estimates. In no analysis
was X. close to Xi.., nor was Xd close to Xb.

These latter observations are not surprising, since Proposition

I shows that, even when the same values of a are used in both

definitions of the critical limit, X. will tend to be larger because

of the prediction error variance term in its formula. Similarly,

Proposition 4 shows that X is typically larger than X,,.

In each repetition of the experiment, X1, decreased the most

between analyses F and G (Figs. 2 and 3). With 20 blank

replicates, increasing the number of specimen replicates from

two to four produced only a marginal decrease in X1,. As the

number of calibrators increased, the X0 probability densities

became more right-skewed (Fig. 3). The median values of X,, in

analyses F, H, and I were respectively 0.287 (range 0.270- 0.304

.tg/L), 0.111 (range 0.098-0.121 j.tg/L), and 0.087 g/L (range

0.074-0.094 tg/L). The ratio of X/, in an F analysis to X.. in the

Table 3. Estimates of the MDC for analyses F through I in
the third repetition of the assay experiment.

Analysis X,,. X, X X6 X6 (CV x 100%)

F 0.028 0.320 0.684 0.830 0.273 (44.39)
G 0.040 0.220 0.490 0.511 0.126 (55.63)
H 0.039 0.216 0.482 0.511 0.098 (63.74)

0.039 0.187 0.413 0.323 0.074 (59.50)
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corresponding H analysis ranged from 4.09 to 7.05 (median

4.71). This latter comparison is important because Xb in the F

analyses would be the MDC estimates for routine runs under
our paradigm, whereas X. in the H analyses would be this

assay’s reported MDC.

Discussion
On the basis of our findings, a representative value for this PSA

assay’s lowest limit of reliable reporting is 0.29 pgfL instead of

0.5 Mg/L in routine runs, and 0.11 g/L instead of 0.03-0.04

j.tg/L in calibration runs. To use this PSA assay for prostate

cancer diagnostic and therapeutic decision-making, we recom-

mend that X,, be computed for each run and only those

measurements that exceed it be reported as significantly greater

than zero. We further recommend that changes be made in this

assay’s present design, to measure reliably PSA concentrations

<0.29 tg/L in the routine assayf’

The Abbott IMx PSA assay has been shown to have corre-

lations of 0.9909 and 0.99 with Hybritech’s Tandem-R#{176}and

Tandem-E5’#{176}PSA assays (Hybritech, San Diego, CA), respec-

tively [32, 33]. Dnistrian et al. also showed that the MDCs based

on X. for the LMx and the Tandem E PSA assays were in very

good agreement [33]. They were both 0.04 MgIL in one

comparison and 0.08 .tg/L for the IMx and 0.12 tgfL for the
Tandem E in a second. Yu and Diamandis reported an ultra-

sensitive PSA assay with Xi,. = 0.002 pg/L and a correlation of

0.96 with the Tandem PSA assay [39].The greater-than-

fourfold median ratio we found between X,, in the routine assays

and X. in the calibration assays together with the high interassay

correlations found in these studies raises the possibility that a

ratio of similar magnitude may exist in these three PSA assays.
Two other specially designed PSA assays have reported

MDCs based on Xi.. of 0.009 and 0.03 g/L, computed with

respectively 20 and 12 replicates of the blank calibrator [40,41].

Our analysis suggests that these MDC estimates may be under-

stated because of the shortcomings in the definition of Xi..

coupled with the fact that in routine use of the assay it is unlikely
that as many blank calibrators would be used. Fig. 2 further

suggests that if the detection limit or the determination limit,

the definitions Currie considered to be reliable measures of

minimal detection, were computed instead of the empirical

critical limit, then the reported MDC of the Abbott LMx PSA

assay would be much higher. The same is most likely true for
these new ultrasensitive immunoassays as well.

Our approach makes two improvements in the current MDC

computational formulae: Bayes’ theorem is used to compute

[X1Y,0] from [IIX,0], and exact numerical convolution methods

are used to compute [X”IY,O]. The first obviates the use of

backfitting and large-sample approximations to compute the
most likely analyte concentration for a given response. It also

Improving assay reliability at ever smaller PSA concentrations is one current

strategy for improving early detection of prostate cancer and its recurrence /36/.
The approach is complicated because PSA exists in at least two forms in senans and

conditions other than cancer are associated with measurable amounts of PSA in the

serwn [37/. The best choice of analyte for a PSA assay and the assay’s most efficient

use for early detection are topics of current debate /38/.

formulates the MDC definition explicitly in terms of the

probability that an analyte is greater than the blank calibrators.

The second obviates the need to combine backfitting and

t-density or gaussian approximations to right-skewed probability

densities to treat simultaneously the error in the blank calibra-

tors and in analyte concentrations to the right of zero. These

improvements are primarily responsible for the differences we

found between the current MDC definitions and Xh, and why

the latter is a more reliable MDC measure determined with

either a small or large number of specimen replicates.

X,, may be reported for any immunoassay run that includes

blank calibrators in the estimation of its dose-response curve.

We have computed Xb for immunoassays for several different

analytes (antithyroid globulin, cis-platinum-DNA adducts, cor-

tisol, melatonin, parathyroid hormone, thyroid-stimulating hor-

mone, and thyroxine), with different labels (chemiluminescent,

enzyme, fluorescent, and radioactive) and different formats

(competitive binding and sandwich) [28 and unpublished data].

X,, eliminates the current ambiguity in MDC interpretation

caused by differences among the MDC definitions. This is

because we used Bayes’ theorem to construct our inference

paradigm. As a consequence, for any analyte concentration,

including the MDC, we can make a quantitative statement

regarding its precision in terms of the probability that it (the

analyte) is greater than the zero dose, its CV, or any other

property of its probability density relevant to an analysis (Table

3). Therefore, we remove the need for four different MDC

definitions and for Currie’s distinction between regions of

unreliable, qualitative, and quantitative detection for analyte

concentrations near the zero dose.

X,, also eliminates the ambiguity in MDC interpretation

caused by the difference between an assay’s calibration and

routine runs. Reporting Xh for each immunoassay provides an

assay-specific estimate of the smallest reportable analyte con-

centration and provides a reliable means of monitoring assay

quality control at low concentrations. X,, can be made more or

less conservative by choosing a smaller or larger probability for

pin Eq. 3. Our definition also suggests a new, readily interpret-

able paradigm for optimal immunoassay design: Use the con-

centration of reagents and experimental conditions that mini-

mize X0 for a given number of calibrators and replicates. This

would allow the same MDC definition to be used for immuno-

assay development and laboratory analysis. Several new technol-

ogies are being used to enhance immunoassay performance at

low analyte concentrations [42]. For example, the new immuno-

PCR assay reports its MDC as <600 molecules [43].Our

paradigm offers a rigorous means of quantifying improvements

in assay MDCs.

The high specificity of monoclonal antibodies and sandwich

assays suggests that for certain immunoassays the accuracy of

our methods can be enhanced by deriving the dose-response

curve from the mass-action laws. Improvements may also be

made by developing a more physically based probability model

of the assay experimental error and by taking account of
interassay variation. To account for interassay variation in the

definition of Xb, we can define the probability densities
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p

s, -* V(YIX = 0,0)

V(YIX= 0,0) -s V(Y)X= 0,0),

p
where -s indicates convergence in probability [44].Similarly,

V(Y)X=X,, 0)-s V(YiX=X, 0)

as k-scc and therefore,

Brown et al.: Defining immunoassay minimal detectable concentration

[XIII = [XI Y,0(0)j[0(0) jdO

[Xi ] = fix) Ii,0(0)] [0(O)jdO (6)

where [#{128}characterizes the uncertainty in 0 among assays with

acceptable quality control. X8 is then computed by substituting

[X1YI and [X1Y1I for [X1Y,0Iand [X1Y,0], respectively, in its
definition. The biologic detection limit was proposed by Ves-

sella et al. [32] to correct for optimistic values of Xi.. as an

approximation to the 0.975 quantile of [X1Y1)I. These consider-

ations are under investigation.

Commonly used immunoassay-based tests predicated on

detecting small concentrations of a biologic substance depend

critically on the MDC for defining a positive result. Among
these are tests for viral infections (HIV, hepatitis B and C),

thyroid dysfunction, food contamination, exposure to polyaro-

matic hydrocarbons, presence of forensic evidence, and illegal

use of controlled substances [1-7]. Our paradigm suggests a

reliable means of defining a positive result for these procedures.

Because the measurement of small analyte concentrations with

calibrated methods (spectroscopy, chromatography, and quan-

titative PCR) is an important problem in many disciplines, our
paradigm for determining the MDC should be applicable to

other analytic procedures.
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Appendix
In the following propositions we assume that [IIX,0] is defined

by Eq. 1, [X] is a uniform probability density on the interval 0 to
Xm.ix where X,,as is 1.5 times the largest nonblank calibrator,

[X1Y,0] is defined by Eq. 2, X,, is given in Definition 1, and X.,
Xi.., X,, and A’,, are defined by the formulae in Table 1.

PROPOSITION I

For a 0.02 5, the difference between X. and Xe.. tends to 0 as

the number of replicates at each calibrator becomes large.

Proof: To compute X. and A’.. from experimental data, we

replace 0 by its maximum likelihood estimate 0 in their

formulae. Y and E(Y1x’O,O) are respectively the method of

moments and maximum likelihood estimates of E(1X0,0).

Similarly, s and V(YIX,0) are respectively the method of

moments and maximum likelihood estimates of V(IIX”0,0). If

the 4PL equation is a good approximation to the true dose-
response curve, then as k, the number of replicates at each

calibrator, tends to infinity, both ? and E(IIX=0,0) converge

to E1X”0,0) and both s,, and V(YjX=0,O) converge to
(5) V(IIX=0,0). That is,

p
Y0 -s E(YIX = 0,0)

E(YiX= 0,O)-sE(Y)X= 0,0)

p
V(YIX = X 0)/k -*0.

Also as k-#{247}x,the t-density converges to a standard gaussian

probability density and in particular, with t -#{176} = t979, the

0.975th quantile of the t-density converges to 1.96=2, the

0.975th quantile of a standard gaussian density /45J. Combining

these results with the definitions of X. and X.. in Table 1 shows

that when k is large, both X. and Xj.. are defined by

E(YIX = 0,0) + 1.96 V(Y)X = 0,0) = E(YIX = A,0) (A.2)

The numerical differences between X. and Xi.. arise because

they are different approximations used to estimate the same

quantity from finite samples. X. will tend to be larger than X..
because the definition of X. has the extra term of V(}IX =

X.,0)/k. This term is the prediction error variance for the 4PL

equation at the point X = Xi.. It must appear because the point

X. was not used in the estimation of the 4PL equation. A

discussion of prediction error variances for simple regression

models may be found in Draper and Smith [46], for nonlinear

regression models in Seber and Wild [47], and for immunoassay

dose-response curves in Munson [20/ and in Davidian et al. [21].

PROPOSITION 2

If a = 0.02 5, then X. and Xe.. are large-sample gaussian

approximations to the 0.975 quantile (upper limit of a 95%

confidence interval) of (X1Y,01, the zero dose probability

density.
Proof: For a gaussian probability density with mean and

variance o, the lower and upper limits of the standard 95%

confidence interval are respectively the 0.025 and 0.975 quan-

tiles, defined as

z)2#{231}= - 1.96o (A.3)

z0,75 = .e + l.96u

If the parameters of the dose-response curve are known, then

for a given dose X0, the 95% confidence interval for the mean

response is
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random variable A’7, in Definition I is fixed at its 1-a quantile,

then X, = X,,.

Proof: Expressed in terms of posterior probability densities, A is

{x:J[x(x)ii)e] = a} (AK)

and Xd is the mean of the probability density that satisfies the

condition

f [X(x)IY,0]dv = I - . (A.9)

From DefInition 1, A’,, is the median of the probability density

[X1Y,01, which satisfies the condition

Pr(X5>X5) = Pr(X5 - X,>0) (A.10)

= Pr(X’>O)

= [X’(x)) Y,0]dv

= p,

where

[A’(x)iY,0I = [X(x))Y,0][X(x + u)iY5,0]du, (A.l I)

and x,,,, is the minimum value of the random variable X*.
If we fix Xv,, at x1_,,, the 1-a quantile of [XY1,0], then the

condition forA’,, in Eq. A.lO becomes

Pr(X5>X5) = Pr(X5>X5)X5 = x1.,,) (A.l2)

= Pr(X,.>x1.,,)

= [X(x)i }‘,#{128})]dx

= p.

By Eq. A.8, A’,. = x1_,,. The probability density of A’,, is

approximately symmetric, so that its median and its mean are

approximately equal. It follows that Eq. A.9 and Eq. A.l2 agree

anti thatX’, = A’,, with p = 1-p.
Because X,,considers the entire probability density of the

zero dose, whereas X, estimates the zero dose by its 1-a

quantile, X, will tend to be larger than A’,,.

Lemma 1. If X is the random variable associated with [XJY,#{128})]
and A’7, is as given in Definition I, then 0.5 SPr(X,, >X5,) l,
where the lower bound holds approximately.

Proof: The upper bound is obvious. Since the zero dose is the

smallest analyte concentration possible, we establish the lower

bound by letting A’7 have the same probability density as Xv,,.

(A.6)

(A.7)
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E(YIX = X1,0) - 1.96 V(Y1X = X0,0) = Z)’J\5525 (A.4)

E(YIX X,0) + l.96V(YIX X,0) =

For a monotone increasing dose-response curve, Z}1097#{231}=

E(}IX,0) for some X,Y pair. For any monotone dose-response

curve, Eq. A.4 also gives an implicit 95% confidence interval for

X [48].This confidence interval is simply the set of doses

corresponding to the responses in the range defined by Eq. A.4.

If we take A’11 = 0, then for a monotone increasing dose-

response curve the upper limit of the X95% confidence interval

is defined by

E(YIX 0,0) + 1.96 V(YIX 0,0) = E(YIX Xos7c,0) (A.5)

where X0975 is the approximate 0.975 quantile of [X1Y,OI.

When the number of replicates of each calibrator is sufficiently

large, Eq. A.2 and Eq. A.5 together imply E(}IX = X,.,0) =

E(}IX = X0975,0) or X’. = X.

PROPOSITION 3
If the dose-response curve is a monotone, differentiable func-

tion of X, then the Ekins-Newman MDC definition is a

gaussian approximation to the 0.84 quantile of [A1Y0,01.
Proof: For a gaussian density with mean j.t and variance o2, the

0.84 quantile is z084 = .t+a, and if .t = 0, then z4 = a. The

probability density [)IX,el defined by Eq. 1 is assumed to be

gaussian. Because the dose-response curve is a monotone,

differentiable function of A’, then by Taylor series expansion,

applications of Slutsky’s theorems and the implicit function
theorem, the analyte concentration for a given response is a

gaussian random variable whose variance may be approximated

as 149, 501:

/dE( }IX,0)\ -2

V(XlY,0)= dX ) V(YIX,0).

If V = Y), the response of the zero dose, and the slope of the

dose-response curve at the zero dose is nonzero and finite, then

the variance of the zero dose is approximately

fdE(YIX= 0,0)\2
V(XiY=Y,0)= dX ) V(YIX=0,0).

If we apply Eq. A.7 under the assumption that the true expected

dose for V0 is zero, then the 0.84 quantile of [X1Y,01 is

approximately

[1/(YIX = 0,0)]vi

dE(YIX = 0,0)
= dX

which is the Ekins-Newman definition of the MDC.

The approximation in Eq. A.6 is also used in the determnina-

tion limit definition in Table 1.

PROPOSITION 4
If (a) the critical and detection limits are computed by using Eq.

2 in lieu of their backfit approximations, (h) the probability

density of A’,, is approximately symmetric, and (c) the value of the
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Then Pr(X >) = Pr(X7, �X7) = 0.5. If V is any response

vector, and E(I1A’,O) is monotone increasing (decreasing), then

the components of V0 need not be uniformly smaller (larger)

than the components of V. However, because the zero dose is

the smallest analyte concentration and because the vector of

responses for any concentration near the zero dose must be near

}‘, the lower bound holds approximately.

PROPOSITION 5

Suppose yin the definition of A’,, is given. If(a) Eq. 2 is used in

lieu of the asymptotic approximation in Eq. A.6 to compute X,
and (b) A’,, is taken to be the mean, rather than the median, of the

probability density that satisfies Eq. 3, then there exists p E

[0.5,11, such that A’,, = A’,,, where p is the probability that A’,, is
greater than the zero dose. Conversely, suppose p in Definition I

is given and (a) and (b) hold. Then there exists a y, such that A’,,

and A’8 agree.

Proof: If we use Eq. 2 to compute A’,,, then we find a probability

density [X1YI,,,,01such that

where

OT,/fL, =

= fx[A’(x)lI#{231},0]dv

= f(x - ,)2[X(x)iY,,0}dv,

and X, = p. Hence, if X7 is the random variable associated with

[XIY,,,0], then by Eq. 3 the probability that A’,, is greater than the

zero dose is PrX7 >X,) = p, where p E [0.5,11 by Lemma I.

Hence, by DefinitionI and (b),A’,, = p.,, and X, = A’,, Conversely,

for a given p, we can use Definition I to compute A’,, and its

associated probability density. If we denote the mean and
standard deviation of this probability density as respectively

and a, then its CV is CV = and by (b) A’,, = If
we now use Eq. 2 to compute A’,, with y = CV, then by the

definition of A’,,, A’,, = and A’,, = A’5.

PROPOSITION 6
The probability of a measurement from [AlY0,01 being misclas-

sified as greater than the zero dose is i-p. Similarly, the

probability of a measurement from the probability density of the

MDC being misclassified as indistinguishable from the zero

dose is i-p.

Proof. A measurement from [XlY,0] is misclassified as

greater than the zero dose if X7,, >X7, where X7 is the random

variable associated with the probability density of the MDC.

By Definition 1,the probability of this event is Pr(X7,, >X) =

1 -Pr(X7,,�X7) = I -Pr(X7,,<A’7) = 1 -p, since A’ is a contin-

uous random variable. A measurement from the probability

density of the MDC is misclassified as indistinguishable from

the zero dose if X7�X7,,. The probability of this event is

Pr(X7X7,) = 1-Pr(X7>A’7,,) = i-p.
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