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BACKGROUND: Biomarkers for estimating reduced glu-
cose tolerance, insulin sensitivity, or impaired insulin
secretion would be clinically useful, since these physi-
ologic measures are important in the pathogenesis of
type 2 diabetes mellitus.

METHODS: We conducted a cross-sectional study in
which 94 individuals, of whom 84 had 1 or more risk
factors and 10 had no known risk factors for diabe-
tes, underwent oral glucose tolerance testing. We
measured 34 protein biomarkers associated with di-
abetes risk in 250-�L fasting serum samples. We ap-
plied multiple regression selection techniques to
identify the most informative biomarkers and de-
velop multivariate models to estimate glucose toler-
ance, insulin sensitivity, and insulin secretion. The
ability of the glucose tolerance model to discrimi-
nate between diabetic individuals and those with im-
paired or normal glucose tolerance was evaluated by
area under the ROC curve (AUC) analysis.

RESULTS: Of the at-risk participants, 25 (30%) were
found to have impaired glucose tolerance, and 11
(13%) diabetes. Using molecular counting technol-
ogy, we assessed multiple biomarkers with high
accuracy in small volume samples. Multivariate
biomarker models derived from fasting samples
correlated strongly with 2-h postload glucose toler-
ance (R2 � 0.45, P � 0.0001), composite insulin
sensitivity index (R2 � 0.91, P � 0.0001), and insulin
secretion (R2 � 0.45, P � 0.0001). Additionally, the
glucose tolerance model provided strong discrimi-
nation between diabetes vs impaired or normal glu-
cose tolerance (AUC 0.89) and between diabetes and
impaired glucose tolerance vs normal tolerance
(AUC 0.78).

CONCLUSIONS: Biomarkers in fasting blood samples
may be useful in estimating glucose tolerance, insulin
sensitivity, and insulin secretion.
© 2010 American Association for Clinical Chemistry

Impaired glucose tolerance and reduced insulin sensi-
tivity and secretion are established risk factors for type
2 diabetes mellitus (T2DM)3 (1– 4 ). Although these
metabolic disturbances begin before the onset of overt
disease, it is difficult to assess these parameters in rou-
tine clinical practice. Identification of biomarkers in
fasting blood samples that could distinguish individu-
als at highest risk for developing T2DM would repre-
sent a major medical advance and potentially provide
novel mechanistic insights into disease pathogenesis.
Thus, in this pilot study, we sought to identify biomar-
kers in fasting blood samples that could estimate
glucose tolerance, insulin sensitivity, and insulin secre-
tion, given their importance in diabetes pathophysiol-
ogy. We note that the cross-sectional study design does
not permit evaluating the association of biomarkers to
incident diabetes risk. We measured 34 distinct serum
protein biomarkers in a small volume of fasting serum
from 94 individuals who underwent 75-g oral glucose
tolerance testing (OGTT), and we developed models
estimating glucose tolerance, insulin sensitivity, and
insulin secretion.

Methods

Studies were approved by the Committee on Human
Studies of the Joslin Diabetes Center. Participants pro-
vided written informed consent. Eighty-four consecu-
tive participants who answered posted advertisements
and reported 1 or more risk factors—including body
mass index (BMI) �30 kg/m2, nonwhite ethnicity, pre-
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vious gestational diabetes or offspring �9 lbs (4.1 kg)
at birth, parental history of diabetes, history of hyper-
tension, dyslipidemia or ischemic heart disease, or his-
tory of “borderline” abnormal glucose (high glucose
but not diagnostic for diabetes)—were studied along
with 10 persons with no known diabetes risk factors.
Additional participant criteria are provided in the
Supplemental Materials (which accompany the online
version of this article at http://www.clinchem.org/
content/vol57/issue2).

Weight, height, and blood pressure were measured
(see details in the online Supplemental Materials).
Fasting blood samples were obtained for laboratory
analysis, and glucose and insulin were measured before
and 30, 60, 90, and 120 min after a 75-g glucose load.
Participants were classified by glucose tolerance status
(5 ).

We calculated insulin resistance using dynamic
composite insulin sensitivity index (CISI) (6 ) and fast-
ing homeostasis model assessment of insulin resistance
(HOMA-IR) (7 ), and insulin secretion using the cor-
rected incremental insulin response (CIR) (8, 9 ), as de-
scribed in the online Supplemental Materials.

BIOMARKERS

Using commercial laboratory techniques, we measured
widely used clinical laboratory markers— glucose,
insulin, hemoglobin A1c (HbA1c), total cholesterol,
HDL cholesterol, LDL cholesterol, triglycerides, and
fructosamine—in fasting blood samples. Thirty-four
additional serum protein biomarkers having a poten-
tial role in diabetes development were quantified using

sandwich-format immunoassays and molecular count-
ing performed on the ZeptX™ System (Singulex), a
predecessor to the Erenna™ System (10 ). Details of the
biomarker assays and detection technology are in the
online Supplemental Materials. In brief, serum protein
biomarkers are quantified with molecular counting
technology in a 10-�L volume using a 384-microwell
immunoassay format. Capture antibodies specific for
an individual biomarker are attached to the surface of
each microwell; serum samples are added, followed by
addition and binding of AlexaFluor 647–labeled sec-
ondary antibody. Fluorescence-labeled antibody com-
plexes are chemically released from each well and
pumped through a capillary flow system for detection
of laser-induced fluorescence. A threshold above back-
ground is set so that each signal represents a labeled
antibody molecule (Fig. 1).

DATA ANALYSIS AND MODEL DEVELOPMENT

We estimated associations among biomarkers on
transformed concentrations using Pearson correlation.
The correlation matrix was represented as a heat map
with marker order decided by nearest-neighbor hierar-
chical clustering. We estimated univariate Spearman
rank correlation between each serum protein biomar-
ker and glucose tolerance (measured as 2-h glucose
concentration following oral glucose), insulin sensitiv-
ity (calculated as CISI), and insulin secretion (calcu-
lated as CIR). These physiologic measures of diabetes
pathophysiology provide useful clinical information
but require testing at multiple time points. Because our
goal is to avoid the need for dynamic testing, we con-

Fig. 1. Schematic of molecular counting technology.

Serum protein biomarkers were quantified with molecular counting technology in a 10-�L volume using a 384-microwell
immunoassay format. (A), Attached to the surface of each microwell are capture antibodies specific for an individual biomarker.
(B), Upon addition of serum sample, biomarkers are bound to the capture antibodies, followed by the addition and binding of
AlexaFluor 647-labeled secondary antibody (C). (D), The fluorescence-labeled antibody complexes are chemically released from
each well and pumped through a capillary flow system for detection of laser-induced fluorescence. (E), Photons emitted from
AlexaFluor 647–labeled antibody molecules are distinguished from background levels so that each signal represents a molecular
counting event.
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structed models using markers measured in blood
samples obtained only in the fasting state and devel-
oped multiple linear regression models by searching
for the most informative marker subsets. Two nested
marker sets were considered: (1) a 46-marker set con-
sisting of 34 serum protein biomarkers and 12 clinical
and routine laboratory markers [age, sex, BMI, waist-
to-hip ratio, HbA1c, and concentrations of glucose, in-
sulin, fructosamine, cholesterol (total, HDL, and
LDL), and triglycerides]; and (2) a 42-marker set that
excluded measures of glycemia (glucose, HbA1c, and
fructosamine) and insulin from consideration, to bet-
ter reveal associations of nonglycemic biomarkers with
indices of diabetes pathophysiology.

All data were log10 transformed except insulin se-
cretion, which was square root transformed to satisfy
distributional assumptions of linear regression. We
used 6 marker selection techniques: forward, back-
ward, and stepwise selection based on Akaike and
Bayesian information criteria (11 ). These techniques
were executed within 100 bootstrap replicates, and
markers selected within each bootstrap sample were
tabulated. For each marker, we computed a weighted
average “selection-count” based on the number of
times it was selected under bootstrap sampling
weighted by 1/k, where k is the number of markers in
each resulting model. Markers were selected based on
average selection-count exceeding a threshold deter-
mined by a permutation test in which outcome was
randomly assigned for each model developed, and 100
bootstrap replicates were used to calculate weighted
marker count averages of 6 selection techniques. We
repeated this permutation process 20 times; the 95th
percentile of weighted marker count averages was used
as a cutoff to identify markers selected significantly
more frequently than random. Selected markers were
used to construct multiple linear regression models.
Internal validation was estimated using bootstrap
model performance (R2) from the median of 10 000
left-out bootstrap replicates for each model output.

A model incorporating 6 biomarkers [adiponec-
tin, C-reactive protein, ferritin, interleukin (IL)-2R�,
glucose, and insulin] was identified recently as predic-
tive of incident T2DM (12 ). For comparison in this
study, we tested the ability of these markers to estimate
glucose tolerance and insulin action and secretion in
independent models and compared the performance,
based on the coefficient of determination (R2), to the
models we identified.

Results

CLINICAL CHARACTERISTICS

Study participants had 1 or more risk factors for devel-
oping diabetes— 44, parental history of diabetes; 33,

obese (BMI �30 kg/m2); 24, history of high choles-
terol; 13, history of hypertension; 19, ethnic minority;
and 24, history of gestational diabetes or other “bor-
derline” abnormal glucose. Ten participants at low risk
for diabetes (no risk factors) were also recruited. On
the basis of the glucose tolerance testing in the entire
study population, 58 individuals were classified as hav-
ing normal glucose tolerance (NGT, 2-h glucose �7.8
mmol/L). Of the at-risk participants, 25 (30%) had im-
paired glucose tolerance (IGT, 2-h glucose range �7.8
to �11.1 mmol/L and fasting plasma glucose �7.0
mmol/L), and 11 (13%) were identified with newly di-
agnosed T2DM (2-h glucose �11.1 mmol/L) (Table 1).

BIOMARKER IMMUNOASSAY ANALYSIS

The mean protein concentrations for the 34 serum pro-
tein biomarkers, which ranged over more than 8 orders
of magnitude (from 10 ng/L to 4.3 g/L) among all 94
study participants, are shown in Table 2. Univariate
Spearman rank correlations between model endpoints
and individual biomarkers are also shown in Table 2.
Leptin, C-reactive protein, and plasminogen activator
inhibitor 1 (PAI-1) have most shared variance with
glucose tolerance, insulin sensitivity, and insulin secre-
tion, respectively. A heat map of the univariate corre-
lations among the 34 different markers is provided in
Fig. 2. Strong positive associations were noted among
total cholesterol and LDL cholesterol, as well as angio-
genin (ANG), TIMP metalloproteinase inhibitor 2
(TIMP2), �-2-HS-glycoprotein (AHSG), and apolipo-
protein E.

MARKER SELECTION IN MULTIVARIATE MODELS

Performance of the multivariate models in estimating
glucose tolerance, insulin sensitivity, and insulin secre-
tion are reported in Table 3. As expected, multivariate
models that include glucose and/or insulin have
stronger correlation with indices of diabetes pathogen-
esis than models excluding these markers from
consideration.

GLUCOSE TOLERANCE

A subset of 5 markers was associated with glucose tol-
erance: fasting glucose, leptin, insulin-like growth fac-
tor binding protein 1 (IGFBP-1), glutamic pyruvate
transaminase (GPT, also known as alanine amino-
transferase), and HbA1c. As shown in Fig. 3A, multivar-
iate modeling indicates that 45% of variance between
modeled and observed 2-h glucose values is accounted
for by these 5 markers alone (P � 0.0001), providing a
fitted estimate. The bootstrap R2 value is 0.38 [inter-
quartile range (IQR) 0.16 – 0.58], providing an esti-
mate of expected performance on an independent data
set. By comparison, a model using 6 biomarkers previ-
ously shown to assess T2DM risk—adiponectin,
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C-reactive protein, ferritin, IL-2R�, glucose, and insu-
lin (12 )— estimated glucose tolerance with an R2 value
of 0.33 (P � 0.0001) and bootstrap R2 value of 0.21
(IQR 0.14 – 0.29).

On excluding glycemic markers (glucose, HbA1c,
and fructosamine) and insulin from consideration, 5
markers were identified as most informative: leptin,
IL-18, GPT, IGFBP-1, and ACE. Multivariate models
constructed with these variables yielded an R2 value of
0.26 (P � 0.0001) and bootstrap R2 value of 0.16 (IQR
0.01– 0.39). Although leptin is associated with excess
weight, leptin remained an important marker for glu-
cose tolerance even after statistically controlling for
BMI (P � 0.001, likelihood ratio test).

DISCRIMINATION OF GLUCOSE TOLERANCE STATUS

The best-performing glucose tolerance model (fasting
glucose, leptin, IGFBP-1, GPT, and HbA1c) was able to
discriminate between individuals based on glucose tol-
erance status. As shown in Fig. 3B, this model yielded
an area under the ROC curve (AUC) of 0.89 for dis-

crimination between those with diabetes vs without di-
abetes (individuals with IGT and NGT). Further, an
AUC of 0.78 was observed for discrimination between
those with abnormal glucose tolerance (T2DM or IGT)
vs those with NGT, and 0.73 for discrimination be-
tween individuals with IGT vs those with NGT.

INSULIN SENSITIVITY

A subset of 5 markers was associated with insulin sen-
sitivity (assessed using the dynamic CISI measure):
fasting glucose, insulin, Fas ligand, complement C3,
and PAI-1. As shown in Fig. 3C, 91% of variance be-
tween predicted and observed CISI values was ac-
counted for by these 5 markers alone (P � 0.0001). In
addition, a bootstrap R2 value of 0.90 (IQR 0.83– 0.94)
indicates that the model could be expected to perform
well on an independent data set. By comparison,
HOMA-IR, a widely accepted estimate of insulin resis-
tance based on fasting glucose and insulin, explained
88% of the variance of the dynamic measure of insulin
sensitivity; thus, addition of Fas ligand, complement

Table 1. Clinical characteristics of study participants according to glucose tolerance at baseline.a

NGT IGT T2DM

n 58 25 11

Male, % 27 (46.6) 6 (24) 4 (36.4)

Age, years 41 (29–47) 50 (35–55) 52 (44–54)

BMI, kg/m2 27.2 (24.7–31.0) 29.7 (25.3–35.0) 33.8 (26.6–38.4)

Waist-to-hip ratio 0.90 (0.84–0.96) 0.86 (0.81–0.94) 0.93 (0.87–0.99)

Systolic blood pressure, mmHg 116 (106–124) 128 (110–134) 130 (123–138)

Diastolic blood pressure, mmHg 75 (68–80) 78 (72–80) 86 (73–90)

Total cholesterol, mmol/L 4.6 (4–5.1) 4.9 (4.3–5.5) 4.3 (3.7–4.6)

LDL cholesterol, mmol/L 3.1 (2.3–3.5) 3.1 (2.4–3.8) 2.7 (2.4–3.5)

HDL cholesterol, mmol/L 1.2 (0.9–1.4) 1.2 (1–1.5) 1 (0.8–1.1)

Triglycerides, mmol/L 1.0 (0.6–1.4) 1.2 (0.7–1.6) 1.3 (0.9–1.9)

HbA1c, % 5.3 (5.1–5.5) 5.4 (5.3–5.6) 6.4 (5.6–6.8)

Urinary albumin, �g/mg creatinine 4.4 (0.6–8.7) 5.6 (3–10.9) 4.9 (3.6–7.6)

Fructosamine, �mol/L 203 (190–218) 214 (203–224) 224 (209–243)

Plasma glucose, mmol/L

Fasting 5.2 (4.9–5.4) 5.4 (5–5.7) 6.4 (5.8–6.9)

2-h 6.1 (5.3–6.9) 8.8 (8–10) 12.9 (12.6–14)

Serum insulin, pmol/L

Fasting 56.6 (38.7–79.9) 82.0 (42.4–140.3) 98.6 (65.6–203.8)

2-h 268.8 (193.4–459.6) 713.3 (475–1224.4) 804.9 (476.8–1202.9)

HOMA-IR 1.85 (1.31–2.9) 2.75 (1.63–5.19) 4.48 (2.62–7.67)

CISI 52.9 (31.7–87.4) 50.1 (37.5–63.5) 19.7 (15.0–66.6)

CIR 0.28 (0.17–0.47) 0.24 (0.15–0.32) 0.17 (0.1–0.23)

a Data are as n (%) or median (interquartile range). Patients were classified according to glucose tolerance based on the 2006 WHO recommendations (5 ), where
2-h postload glucose values for NGT are �7.8 mmol/L, for IGT are �7.8 and �11.1 mmol/L, and for T2DM are �11.1 mmol/L.
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Table 2. Biomarker levels of study participants.a

Biomarker Symbol Mean �g/L (95% CI)

Spearman correlation (P)b

Glucose
tolerance

Insulin
secretion Insulin sensitivity

Angiotensin I converting
enzyme (peptidyl-
dipeptidase A) 1

ACE 167 (24–1.2 � 103) 0.14 (0.16) �0.06 (0.54) 0.05 (0.63)

Adiponectin ADIPOQ 5.0 � 104 (4.2 � 103–6.1 � 105) �0.11 (0.29) �0.17 (0.11) 0.29 (0.004)c

Advanced glycosylation
end product–specific
receptor

AGER 0.01 (0.001–0.13) �0.12 (0.25) �0.02 (0.86) 0.27 (0.01)c

�-2-HS-glycoprotein AHSG 3.9 � 106 (1.0 � 106–1.5 � 107) 0.09 (0.39) 0.07 (0.48) �0.16 (0.12)

Angiogenin, ribonuclease,
RNase A family, 5

ANG 680 (85–5.4 � 103) �0.01 (0.90) 0.2 (0.057) �0.19 (0.07)

Apolipoprotein E APOE 6.7 � 105 (9.0 � 104–4.9 � 106) 0.09 (0.40) 0.11 (0.31) �0.20 (0.06)

Complement C3 C3 4.3 � 106 (2.8 � 105–6.6 � 107) 0.10 (0.32) 0.02 (0.86) �0.09 (0.37)

Chemokine (C-C motif)
ligand 2

CCL2 0.09 (0.01–0.88) 0.01 (0.94) 0.13 (0.21) �0.03 (0.75)

CD 14, soluble CD14 70 (8.8–562) 0.03 (0.75) 0.01 (0.94) 0.04 (0.71)

C-reactive protein,
pentraxin-related

CRP 350 (11–1.1 � 104) 0.32 (0.001)c 0.25 (0.01)c �0.55 (�0.0001)c

Dipeptidyl peptidase IV DPP4 3.0 (0.1–115) �0.16 (0.13) 0.09 (0.39) 0.10 (0.31)

Epidermal growth factor EGF 0.08 (0.003–2.0) 0.16 (0.12) 0.11 (0.30) �0.14 (0.19)

Endoglin (Osler-Rendu-
Weber syndrome 1)

ENG 6.6 (1.5–29.3) �0.23 (0.02)c �0.03 (0.81) 0.12 (0.27)

Fas FAS 1.0 (0.2–6.9) 0.13 (0.22) 0.08 (0.45) �0.29 (0.005)c

Fas ligand FASLG 0.14 (0.05–0.38) 0.09 (0.38) 0.07 (0.48) �0.14 (0.18)

Fibrinogen FGA 5.9 � 104 (1.3 � 104–2.7 � 105) 0.03 (0.80) 0.25 (0.01)c �0.20 (0.06)

Ferritin FTH1 842 (60–1.2 � 104) 0.11 (0.31) 0 (0.96) �0.18 (0.07)

Glutamic-pyruvate
transaminase

GPT 2.8 (0.6–13.1) 0.14 (0.19) �0.01 (0.94) �0.11 (0.30)

Hepatocyte growth factor HGF 0.19 (0.03–1.34) 0.26 (0.01)c 0.22 (0.03)c �0.45 (�0.0001)c

Haptoglobin HP 8.6 � 105 (8.6 � 104–8.5 � 106) 0.19 (0.07) 0.27 (0.008)c �0.33 (0.001)c

Heat shock 70-kDa
protein 1B

HSPA1B 2.9 (0.4–19.1) 0.05 (0.65) 0.22 (0.05)c �0.12 (0.24)

Insulin-like growth factor
binding protein 1

IGFBP1 0.82 (0.07–9.5) �0.04 (0.71) �0.28 (0.006)c 0.51 (�0.0001)c

Insulin-like growth factor
binding protein 2

IGFBP2 90.9 (11.2–734.9) �0.16 (0.13) �0.11 (0.29) 0.28 (0.006)c

Insulin-like growth factor
binding protein 3

IGFBP3 17.2 (7.2–41.3) �0.10 (0.33) �0.01 (0.96) 0.09 (0.37)

Interleukin-18 IL18 0.22 (0.03–1.5) 0.33 (0.001)c 0.1 (0.32) �0.40 (�0.0001)c

Interleukin-2 receptor, � IL2RA 0.22 (0.05–0.96) 0.18 (0.08) 0.01 (0.9) �0.29 (0.005)c

Leptin (obesity homolog,
mouse)

LEP 2.0 (0.1–34) 0.40 (�0.0001)c 0.17 (0.10) �0.52 (�0.0001)c

Resistin RETN 14.8 (4.6–47) 0.17 (0.11) 0.06 (0.59) �0.18 (0.08)

Plasminogen activator
inhibitor-1 (serpin
peptidase inhibitor)

PAI-1 132 (22–804) 0.25 (0.01)c 0.32 (0.001)c �0.48 (�0.0001)c

Continued on page 331
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C3, and PAI-1 resulted in a small but significant im-
provement (P � 0.0001, likelihood ratio test) over
HOMA-IR in estimating insulin sensitivity by CISI.
Further, the model using the 6 biomarkers previously
shown to assess incident T2DM risk (12 ) estimated
insulin sensitivity with an R2 value of 0.89 (P � 0.0001)
and bootstrap R2 value of 0.87 (IQR 0.85– 0.89).

When glycemic markers and insulin were re-
moved from consideration, 5 markers were identified
as most informative: IGFBP-1, leptin, PAI-1, GPT, and
triglycerides. Multivariate models constructed with
these variables yielded an R2 value of 0.62 (P � 0.0001)
and bootstrap R2 value of 0.58 (IQR 0.37– 0.73).

INSULIN SECRETION

Five markers were associated with insulin secretion:
fasting glucose, insulin, PAI-1, ACE, and IL-2R�. As
shown in Fig. 3D, multivariate modeling indicates that
45% of the variance between predicted and observed
square root CIR values is accounted for by these 5
markers alone (P � 0.0001), and the bootstrap R2 value
is 0.39 (IQR 0.12– 0.61). When glucose, HbA1c, fruc-
tosamine, and insulin were removed from consider-
ation, 6 markers were selected: PAI-1, tumor necrosis
factor receptor superfamily member 1A (TNFRSF1A),
chemokine ligand 2, IL-2 receptor, IGFBP-1, and ACE.
Multivariate models constructed with these 6 variables
yielded an R2 value of 0.37 (P � 0.0001) and bootstrap
R2 value of 0.29 (IQR 0.07–0.50). By comparison, the
model using the 6 biomarkers previously shown to assess
incident T2DM risk (12 ) estimated insulin secretion
with a larger fitted R2 value of 0.42 (P � 0.0001) but a

lower bootstrap R2 value of 0.32 (IQR 0.24 – 0.40), sug-
gesting that, within the current population, this latter
model is more biased than the 5-marker model defined
above.

Discussion

Our data indicate that multivariate models based on
multiple biomarkers can be used to estimate glucose
tolerance, insulin sensitivity, and insulin secretion. Al-
though our cross-sectional study design cannot iden-
tify markers predicting diabetes risk, such composite
biomarker profiles may be useful to more readily iden-
tify people at high risk of diabetes and improve target-
ing of preventive strategies. Genetic variants have been
shown to provide additive value to clinical risk factors
to identify progression to disease (9, 14 ), and meta-
bolic biomarkers may further improve identification of
people with highest risk profiles. The fact that �40% of
consecutive clinically at-risk persons in this study had
IGT or previously undiagnosed T2DM further empha-
sizes the need for screening and/or diagnostic tools that
extend beyond readily accessible clinical variables. No-
tably, although the clinical variables age, sex, BMI, and
waist-to-hip ratio were evaluated for selection during
model development, none of these was selected as
among the most informative variables, suggesting that
the information was captured in the biomarkers se-
lected by the model development algorithm.

Because the OGTT is less frequently used in clini-
cal practice, individuals with either T2DM or IGT, de-
fined on the basis of high postload glucose values but

Table 2. Biomarker levels of study participants.a (Continued from page 330)

Biomarker Symbol Mean �g/L (95% CI)

Spearman correlation (P)b

Glucose
tolerance

Insulin
secretion Insulin sensitivity

Sex hormone-binding
globulin

SHBG 1.1 � 104 (1.1 � 103–1.1 � 105) �0.07 (0.52) �0.06 (0.58) 0.19 (0.07)

TIMP metallopeptidase
inhibitor 2

TIMP2 206 (26–1628) 0.03 (0.80) 0.13 (0.21) �0.09 (0.40)

Tumor necrosis factor
receptor superfamily
member 1A

TNFRSF1A 0.39 (0.06–2.6) 0.14 (0.17) 0.32 (0.0014)c �0.36 (0.0003)c

Vascular cell adhesion
molecule 1

VCAM1 488 (32–7292) �0.01 (0.94) �0.11 (0.31) 0.17 (0.11)

von Willebrand factor VWF 395 (40–3908) 0.09 (0.40) �0.14 (0.17) �0.001 (0.99)

a Concentrations for the 34 serum protein biomarkers assessed using molecular counting technology. Mean protein concentrations ranged over 8 orders of
magnitude. Univariate Spearman rank correlations between individual protein biomarkers and glucose tolerance, insulin secretion, and insulin sensitivity are
provided.

b Univariate Spearman rank correlations between model endpoints and individual biomarkers.
c Correlations with a significance of P � 0.05.
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with normal fasting glucose values, may not be diag-
nosed. This is an important consideration, as postchal-
lenge glucose better predicts increased risk for cardio-
vascular disease (13, 14 ). Importantly, the multivariate
glucose tolerance model provides strong discrimina-
tion between individuals with confirmed newly diag-
nosed T2DM (based solely on 2-h postload glucose)
and those with known risk factors for development of
T2DM but without disease (AUC 0.89). The glucose

tolerance model also provides relevant discrimination
between individuals with IGT and those with NGT
(AUC 0.73). These data may therefore provide infor-
mation to guide selection of patients who warrant
more aggressive intervention for risk factors, such as
smoking, weight, blood pressure, and lipid manage-
ment. Recent studies have found combinations of
biomarkers—including adiponectin, C-reactive protein,
ferritin, IL-2R�, IL-1 receptor antagonist, apolipopro-

Fig. 2. Heat map of the univariate correlations among the serum protein biomarkers.

Pearson correlation was used to estimate associations among biomarkers on transformed concentrations. For key to
abbreviations, see Table 2.
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Table 3. Models for the prediction of physiologic indicators of diabetes based on biomarkers measured in
fasting blood samples.

Model componentsa Estimateb Standard error Pc Multiple R2 Bootstrap R2

Glucose tolerance (all markers) 0.45 0.38

Glucose 1.025 0.3306 0.0026

Leptin 0.076 0.0179 �0.0001

IGFBP-1 0.060 0.0281 0.0355

GPT 0.082 0.0511 0.1108

HbA1c 1.162 0.4407 0.0099

Glucose tolerance (excluding glycemic markers and insulin) 0.26 0.16

Leptin 0.096 0.0241 0.0001

IL-18 0.246 0.1096 0.0275

GPT 0.096 0.0600 0.1142

ACE 0.086 0.0588 0.1448

IGFBP-1 0.024 0.0319 0.4509

Insulin sensitivity (all markers) 0.91 0.90

Glucose �0.646 0.2231 0.0048

Insulin �0.852 0.0413 �0.0001

Fas ligand �0.011 0.0051 0.0303

Complement C3 �0.0001 0.00004 0.0073

PAI-1 �0.122 0.0535 0.0248

Insulin sensitivity (excluding glycemic markers and insulin) 0.62 0.58

IGFBP-1 0.239 0.0453 �0.0001

Leptin �0.171 0.0359 �0.0001

PAI-1 �0.220 0.0813 0.0083

GPT �0.291 0.0856 0.0010

Triglycerides �0.223 0.0801 0.0067

Insulin secretion (all markers) 0.45 0.39

Glucose �1.782 0.3764 �0.0001

Insulin 0.390 0.0697 �0.0001

PAI-1 0.161 0.0694 0.023

ACE �0.119 0.0687 0.088

IL-2R� �0.195 0.1014 0.058

Insulin secretion (excluding glycemic markers and insulin) 0.37 0.29

PAI-1 0.270 0.0685 0.0002

TNFRSF1A 0.242 0.0854 0.0058

CCL2 0.124 0.0367 0.0011

IL-2R� �0.341 0.1095 0.0025

IGFBP-1 �0.096 0.0397 0.0177

ACE �0.177 0.0756 0.0218

a Models with all markers considered 34 serum protein biomarkers plus 9 additional markers measured in fasting samples, including glucose, HbA1c, total
cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, fructosamine, insulin, and urinary albumin. Models excluding glycemic markers and insulin did not
consider glucose, HbA1c, fructosamine, and insulin.

b The estimate, �, is the coefficient describing the relationship between the model input and outcome with the associated standard error.
c The P value tests the hypothesis that � � 0; the multiple R2 is the fitted result of the model, and the bootstrap R2 is intended to estimate its performance on

an external data set.
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tein B, glucose, and insulin—to be of potential value
for prediction of incident diabetes (12, 15 ). The mark-
ers we identified to be associated with glucose tolerance
differed somewhat. Our study used fasting biomarkers
to predict 2-h postload glucose on the same day,
whereas the other studies aimed to predict future dis-
ease. It is also possible that different biomarkers will
predict disease differentially in diverse populations
which have dissimilar genetic makeup or environmen-
tal exposures.

Biomarkers from fasting specimens also correlated
with the dynamic insulin secretion index. Methods to

assess �-cell function in clinical studies are limited, and
multivariate biomarkers may provide an alternative.
Of note, the insulin secretion model is strong under
both scenarios, accounting for 45% of the variance
(bootstrap estimate 39%) when all markers were con-
sidered, and 37.3% of the variance (bootstrap estimate
29%) when glycemic markers and insulin were ex-
cluded. This finding suggests that a large component of
insulin secretion can be estimated by nonglycemic
variables, although confirmation in a unique patient
group is needed. This is especially important since
the homeostasis model assessment underestimates the

Fig. 3. Performance of the multivariate linear regression models for glucose tolerance, insulin sensitivity, and
insulin secretion.

(A), Glucose tolerance model, predicted versus observed log10 OGTT 2-h plasma glucose values, with an R2 value of 0.45 and
a bootstrap R2 value of 0.38. The components for the glucose tolerance model include fasting glucose, leptin, IGFBP-1, GPT,
and HbA1c. (B), ROC analysis for discrimination of T2DM, IGT, and NGT by the glucose tolerance model. (C), Insulin sensitivity
model, predicted versus observed log10 CISI values, with an R2 value of 0.91 and a bootstrap R2 value of 0.90. The components
for the insulin sensitivity model include fasting glucose, insulin, Fas ligand, complement C3, and PAI-1. (D), Insulin secretion
model, predicted versus observed square root CIR values, with an R2 value of 0.45 and a bootstrap R2 value of 0.39. The
components for the insulin secretion model include fasting glucose, insulin, PAI-1, ACE, and IL-2R�.
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magnitude of �-cell defects demonstrated by the
OGTT in IGT and newly diagnosed diabetes (16 ).

The insulin sensitivity model exhibited the strongest
performance, accounting for 91% of the variance between
predicted and observed CISI values when all markers were
considered. This finding would be anticipated, as fasting
insulin and glucose correlate with insulin sensitivity in the
widely used HOMA-IR model. However, 62% of the vari-
ance in insulin sensitivity could be accounted for by the
markers IGFBP-1, leptin, PAI-1, GPT, and triglycerides in
models where glycemic markers and insulin were ex-
cluded. The strong performance of the insulin sensitivity
model is noteworthy, since all measurements are based on
fasting samples, yet the full model demonstrates a corre-
lation with CISI values significantly better than that of
HOMA-IR alone. In future studies, it will be interesting to
compare performance of the insulin sensitivity model
with euglycemic-hyperinsulinemic clamp–derived mea-
sures of insulin sensitivity, currently the gold standard.
Together, these findings underscore the value of multiple
select biomarkers over fasting glucose and insulin mea-
surements alone in assessing insulin sensitivity.

A 6-biomarker set was previously identified in the
Inter99 cohort to predict incident diabetes: adiponec-
tin, C-reactive protein, ferritin, IL-2R�, glucose, and
insulin (12 ). On assessing these 6 biomarkers in our
study population, we found that each of these biomar-
kers was involved in glucose tolerance and insulin ac-
tion in univariate analysis. Although the biomarkers
selected in our models for estimating glucose tolerance,
insulin secretion, and insulin sensitivity differ from
those of the 6-biomarker model previously developed,
this could be due to use of different endpoints, differ-
ences between study populations, or additional factors
related to the pathophysiology of T2DM. Nonetheless,
when used to construct linear regression models in our
study population, we found that these 6 biomarkers
also performed reasonably well in estimating glucose
tolerance, insulin sensitivity, and insulin secretion, as
demonstrated by bootstrap R2 values of 0.21, 0.87, and
0.32, respectively, for a 6-biomarker model compared
with 0.38, 0.90, and 0.38, respectively, for multivariate
models identified solely within our data set. The fact
that the 6-biomarker model, selected in a different
population for the related but different outcome of de-
velopment of diabetes, performed as well as it did in
estimating glucose tolerance, insulin sensitivity, and
insulin secretion in our population is encouraging, in
that it suggests that the biomarkers reflect the underly-
ing disease pathology.

The subset of protein biomarkers we identified as
most informative are consistent with earlier reports.
For example, we found that PAI-1 was important for
the prediction of insulin sensitivity and insulin secre-
tion. Earlier studies have shown that serum concentra-

tions of PAI-1 correlate with plasma insulin and insulin
resistance and predict the likelihood of developing di-
abetes (17 ). Similarly, we identified complement C3 as
among the most informative biomarkers for prediction
of insulin sensitivity. Complement C3 is strongly asso-
ciated with insulin resistance and increased risk of
T2DM (18, 19 ). We also identified IL-18 and leptin as
important biomarkers for prediction of glucose toler-
ance. Serum concentrations of IL-18 correlate with
fasting glucose (20, 21 ) and with T2DM risk (22 ). By
comparison, beyond the association with excess
weight, the relationship between leptin and T2DM risk
is less clear. Our results indicate that leptin is an impor-
tant predictor of glucose tolerance even after statisti-
cally controlling for BMI (P � 0.001, likelihood ratio
test). Although some studies have found high leptin
concentrations associated with an increased risk of in-
cident T2DM (23, 24 ), other studies found either no
independent association between leptin concentra-
tions and T2DM risk (25 ) or that high leptin concen-
trations predicted lower risk (26 ).

One interpretation of our observations is that bi-
omarkers identified as important for estimating glucose
tolerance, insulin sensitivity, and insulin secretion may be
causally related to T2DM development. However, statis-
tical association of biomarkers with these parameters does
not necessarily imply a causative role in T2DM pathogen-
esis. Alternatively, biomarkers may change as a result of
the underlying disease process or from a common genetic
etiology that underlies both biomarker expression and
T2DM risk. Additionally, differences in biomarker con-
centrations could be a result of existing disease rather than
a predictor, as several individuals in this cross-sectional
cohort had diabetes that was diagnosed during participa-
tion. Our study used only biomarkers already linked to
diabetes pathophysiology in the published scientific liter-
ature and hence does not represent an unbiased survey of
all markers that may be important for disease pathogene-
sis. The criterion we used for selecting markers was
whether their weighted counts exceeded random likeli-
hood based on a permutation test, not whether their co-
efficient was significantly different from zero. The strong
correlations we observed between biomarkers (shown in
the heat map of Fig. 2) could reflect collinearity, in which
case biomarkers could be removed from the models as a
statistical artifact due to strong correlation with another
marker rather than for more important biological rea-
sons. In addition, although we used bootstrap models to
estimate performance in an independent cohort, valida-
tion of our findings is important before implementation
in clinical practice. Our observations on the relative im-
portance of biomarkers in estimating glucose tolerance,
insulin sensitivity, and insulin secretion provide proof-
of-concept that prospective studies in large, well-
characterized cohorts would be worthwhile.
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In conclusion, our findings indicate that measure-
ment of biomarkers in fasting blood samples may be
useful for identifying reduced glucose tolerance, insu-
lin sensitivity, and insulin secretion—metabolic dis-
turbances all linked to T2DM risk. Furthermore, it may
be possible to use fasting blood samples to identify in-
dividuals with IGT who are at risk for not only T2DM
but also incident cardiovascular disease. We identified
fasting glucose, leptin, IGFBP-1, GPT, and HbA1c as
the most informative markers for glucose tolerance;
fasting glucose, insulin, Fas ligand, complement C3,
and PAI-1 as most informative for insulin sensitivity;
and fasting glucose, insulin, PAI-1, ACE, and IL-2R� as
most informative for insulin secretion. It will be im-
portant to evaluate performance of these models pro-
spectively in independent cohorts, especially using lon-
gitudinal study designs for prediction of T2DM.
Ultimately, assessment of biomarkers may comple-
ment additional strategies, such as genetic approaches.
By identifying individuals with highest levels of insulin
resistance, impaired insulin secretion, and/or glucose
tolerance, it may be possible to focus lifestyle and drug
intervention strategies aimed at preventing or delaying
onset of disease.

Author Contributions: All authors confirmed they have contributed to
the intellectual content of this paper and have met the following 3 re-

quirements: (a) significant contributions to the conception and design,
acquisition of data, or analysis and interpretation of data; (b) drafting
or revising the article for intellectual content; and (c) final approval of
the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon
manuscript submission, all authors completed the Disclosures of Poten-
tial Conflict of Interest form. Potential conflicts of interest:

Employment or Leadership: R.W. Gerwien, Tethys Bioscience; J.
Kolberg, Diabetes Research, Tethys Bioscience; S.J. Hamren, Tethys
Bioscience; G.P. Hein, Tethys Bioscience; X.M. Xu, Tethys Bioscience.
Consultant or Advisory Role: A.B. Goldfine, Tethys Scientific Clin-
ical Advisory Board and consultant to Tethys Bioscience.
Stock Ownership: R.W. Gerwien, Tethys Bioscience; J. Kolberg, Te-
thys Bioscience; S.J. Hamren, Tethys Bioscience; G.P. Hein, Tethys
Bioscience; X.M. Xu, Tethys Bioscience.
Honoraria: None declared.
Research Funding: A.B. Goldfine, Tethys Bioscience, NIH grants
DK-062948 and DK070648, and American Diabetes Association
Career Development Award (06-CD-07); M.E. Patti, NIH grant
DK-060837 and the Lilly Foundation. This study was supported by
NIH grants DERC P30-DK-36836 and GCRC M01-RR-001032
(Joslin Diabetes Center).
Expert Testimony: None declared.

Role of Sponsor: The funding organizations played a direct role in
review and interpretation of data, and preparation and approval of
manuscript.

Acknowledgments: The authors gratefully acknowledge the skillful
technical assistance of P. Scott Eastman, Emmie Q. Fernandez, Tim-
othy R. Hamilton, and Jillian Meri and thank Linda Wuestehube for
editorial assistance and Anthony Sponzilli and Bryan Walton for
illustrations.

References

1. Eriksson J, Franssila-Kallunki A, Ekstrand A, Salo-
ranta C, Widen E, Schalin C, Groop L. Early met-
abolic defects in persons at increased risk for
non-insulin-dependent diabetes mellitus. N Engl
J Med 1989;321:337–43.

2. O’Rahilly S, Turner RC, Matthews DR. Impaired pul-
satile secretion of insulin in relatives of patients with
non-insulin-dependent diabetes. N Engl J Med
1988;318:1225–30.

3. Pimenta W, Korytkowski M, Mitrakou A, Jenssen
T, Yki-Jarvinen H, Evron W, et al. Pancreatic
beta-cell dysfunction as the primary genetic le-
sion in NIDDM: evidence from studies in normal
glucose-tolerant individuals with a first-degree
NIDDM relative. JAMA 1995;273:1855–61.

4. Unwin N, Shaw J, Zimmet P, Alberti KG. Impaired
glucose tolerance and impaired fasting glycaemia:
the current status on definition and intervention.
Diabet Med 2002;19:708–23.

5. World Health Organization. Definition and diag-
nosis of diabetes mellitus and intermediate
hyperglycemia: report of a WHO/IDF consultation.
Geneva, Switzerland: WHO Press; 2006.

6. Matsuda M, DeFronzo RA. Insulin sensitivity in-
dices obtained from oral glucose tolerance
testing: comparison with the euglycemic insulin
clamp. Diabetes Care 1999;22:1462–70.

7. Matthews DR, Hosker JP, Rudenski AS, Naylor
BA, Treacher DF, Turner RC. Homeostasis model
assessment: insulin resistance and beta-cell func-
tion from fasting plasma glucose and insulin con-

centrations in man. Diabetologia 1985;28:412–9.
8. Hanson RL, Pratley RE, Bogardus C, Narayan KM,

Roumain JM, Imperatore G, et al. Evaluation of
simple indices of insulin sensitivity and insulin
secretion for use in epidemiologic studies. Am J
Epidemiol 2000;151:190–8.

9. Lyssenko V, Jonsson A, Almgren P, Pulizzi N,
Isomaa B, Tuomi T, et al. Clinical risk factors,
DNA variants, and the development of type 2
diabetes. N Engl J Med 2008;359:2220–32.

10. Todd J, Freese B, Lu A, Held D, Morey J, Living-
ston R, Goix P. Ultrasensitive flow-based immu-
noassays using single-molecule counting. Clin
Chem 2007;53:1990–5.

11. Venables WN, Ripley BD. Modern applied statis-
tics with S. 4th ed. Springer; 2002.

12. Kolberg JA, Jorgensen T, Gerwien RW, Hamren S,
McKenna MP, Moler E, et al. Development of a
type 2 diabetes risk model from a panel of serum
biomarkers from the Inter99 cohort. Diabetes
Care 2009;32:1207–12.

13. Hanefeld M, Fischer S, Julius U, Schulze J,
Schwanebeck U, Schmechel H, et al. Risk factors
for myocardial infarction and death in newly de-
tected NIDDM: the Diabetes Intervention Study,
11-year follow-up. Diabetologia 1996;39:1577–
83.

14. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox
CS, Dupuis J, et al. Genotype score in addition to
common risk factors for prediction of type 2
diabetes. N Engl J Med 2008;359:2208–19.

15. Salomaa V, Havulinna A, Saarela O, Zeller T,
Jousilahti P, Jula A, et al. Thirty-one novel bio-
markers as predictors for clinically incident dia-
betes. PLoS One 2010;5:e10100.

16. Festa A, Williams K, Hanley AJ, Haffner SM. Beta-
cell dysfunction in subjects with impaired glucose
tolerance and early type 2 diabetes: comparison
of surrogate markers with first-phase insulin se-
cretion from an intravenous glucose tolerance
test. Diabetes 2008;57:1638–44.

17. Festa A, D’Agostino R Jr, Tracy RP, Haffner SM.
Elevated levels of acute-phase proteins and plas-
minogen activator inhibitor-1 predict the devel-
opment of type 2 diabetes: the insulin resistance
atherosclerosis study. Diabetes 2002;51:1131–7.

18. Engstrom G, Hedblad B, Eriksson KF, Janzon L,
Lindgarde F. Complement C3 is a risk factor for
the development of diabetes: a population-based
cohort study. Diabetes 2005;54:570–5.

19. Muscari A, Antonelli S, Bianchi G, Cavrini G,
Dapporto S, Ligabue A, et al. Serum C3 is a
stronger inflammatory marker of insulin resis-
tance than C-reactive protein, leukocyte count,
and erythrocyte sedimentation rate: comparison
study in an elderly population. Diabetes Care
2007;30:2362–8.

20. Aso Y, Okumura K, Takebayashi K, Wakaba-
yashi S, Inukai T. Relationships of plasma
interleukin-18 concentrations to hyperhomocys-
teinemia and carotid intimal-media wall thick-
ness in patients with type 2 diabetes. Diabetes

336 Clinical Chemistry 57:2 (2011)

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/57/2/326/5621140 by guest on 09 M
arch 2024



Care 2003;26:2622–7.
21. Esposito K, Nappo F, Giugliano F, Di Palo C,

Ciotola M, Barbieri M, et al. Cytokine milieu
tends toward inflammation in type 2 diabetes.
Diabetes Care 2003;26:1647.

22. Thorand B, Kolb H, Baumert J, Koenig W, Chamb-
less L, Meisinger C, et al. Elevated levels of
interleukin-18 predict the development of type 2
diabetes: results from the MONICA/KORA Augs-
burg Study, 1984–2002. Diabetes 2005;54:

2932–8.
23. McNeely MJ, Boyko EJ, Weigle DS, Shofer JB,

Chessler SD, Leonnetti DL, Fujimoto WY. Associ-
ation between baseline plasma leptin levels and
subsequent development of diabetes in Japanese
Americans. Diabetes Care 1999;22:65–70.

24. Wannamethee SG, Lowe GD, Rumley A, Cherry L,
Whincup PH, Sattar N. Adipokines and risk of
type 2 diabetes in older men. Diabetes Care
2007;30:1200–5.

25. Kanaya AM, Wassel Fyr C, Vittinghoff E, Harris
TB, Park SW, Goodpaster BH, et al. Adipocyto-
kines and incident diabetes mellitus in older
adults: the independent effect of plasminogen
activator inhibitor 1. Arch Intern Med 2006;166:
350–6.

26. Schmidt MI, Duncan BB, Vigo A, Pankow JS,
Couper D, Ballantyne CM, et al. Leptin and inci-
dent type 2 diabetes: risk or protection? Diabe-
tologia 2006;49:2086–96.

Biomarkers of T2DM Risk

Clinical Chemistry 57:2 (2011) 337

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/article/57/2/326/5621140 by guest on 09 M
arch 2024


